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ABSTRACT

A kinetic equation for an inhomogeneous and non-isotropic plasma

is derived in the plasma limit. The treatment is based on the joint

solution of the first two members of the BBKGY hierarchy, and on a

linearization procedure about the unperturbed state. The unperturbed

distribution functions, f0(T/) and %(77,77 ', r-r'), are unspecified.

Furthermore, the unperturbed pair correlation function,

%(7,77 ', r - r'), in favor of the unperturbed one-is eliminated

particle distribution function, f0(_). This elimination is accomplished

by solving the equation for %(77 , 77',r - r'). The resulting kinetic

equation is free from Bogolyubov's adiabatic hypothesis; therefore,

it is valid for arbitrary frequency. In the limiting case when the

frequency under consideration is much higher than the collision-

frequency, a general expression for the high-frequency electric con-

ductivity tensor is derived. From this general expression the results

for the homogeneous and isotropic case previously derived by

Klevans and Wu 18, as well as the results for the thermodynamic

equilibrium case derived by Oberman, Ron, and Dawson 16 can be

recovered.

V



Chapter I.

1. Introduction

PART I. THE KINETIC EQUATION

Derivation of a Kinetic Equation for a Plasma.

It is well-known that the BBKGY 1 hierarchy of equations (which is

obtained by successive integrations of the Liouville equation) is a

systematic starting point to approach kinetic theory. Unfortunately,

this hierarchy is a chain of coupled equations which, so far, has not

been decoupled rigorously for any non-equilibrium situation. However,

in case of the kinetic theory of plasmas, the equations have been ex-

panded 2-5 in terms of the so-called plasma parameter, _ = (u _D )-1,

where rb is the particle density, and _D is the Debye length (ioe.,

the inverse of the number of particles in a Debye sphere). For a

high-temperature plasma, _ is small, so that quantities like the

t:hree particle correlation function which are of higher order in c can

be neglected. Based on this argument, the BBKGY hierarchy can be

truncated after the second equation. This results in a set of two

equations for f (the one-particle distribution function), and g(the

pair correlation function). Symbolically, the set of these equations

can be written as

V[f] = L[g] , (I-l)

M[g] = N[f] , (I-2)

where V, L, M, and N, are operators. In principle, Eq. (I-2)

1
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(together with suitable initial conditions) determine g in terms of f;

substitution into Eq. (I-l) yields the desired kinetic equation. However,

the problem of obtaining a general solution of Eq. (I-2) without further

assumptions is too difficult to manage. Hence, many approximation

2-8
schemes have been contrived. Here, we only name two of them

which have connection with this thesis.

(1) The B!GL 3-5 (Balescu, Guernsey, and Lenard) approximation

6
(2) The Guernsey "small-amplitude" approximation.

(1) The BGL approximation

Since the BGL-approximation is described extensively in the

literature 1, we shall say only a few words about it. The BGL-approxt-

mation is based on the following assumptions: (a) the system is

spatially uniform, and (b) Bogolubov's adiabatic hypothesis; this

means that the one-particle distribution function remains stationary

on a time scale during which the two-particle distribution function

changes.

However, in high frequency phenomena (e. g., plasma oscillations,

or microwave propagation in a plasma) Bogolubov's adiabatic hypothesis

is not valid. Furthermore, the spatially inhomogeneous effects are

lost through the assumption of spatial uniformity. Thus, an alter-

native treatment is desired. This lead to the development of Guernsey's

"s ma 11°a mplitude" appr oximat ion.
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(2) Guernsey's "small-amplitude" approximation

6
Guernsey has shown that, if Eqs. (I-l) and (I-2) are linearized

about thermodynamic equilibrium, the resulting equation for the

linearized pair correlation function can be solved exactly in terms of

the one-particle distribution function. The one-particle distribution

function is now allowed to vary with time in an arbitrary way, and is

no longer "frozen" while the pair correlation function changes. The

substitution of the resulting expression into the linearized version of

Eq. (I-l) gives a so-called "small amplitude" kinetic equation which

correctly describes mixed situations in which "collisional" and plasma-

oscillation effects both play an important part.

In this approach, the assumptions (a) and (b) (in the BGL-

appreximation) are replaced by a condition of small deviations from

thermodynamic equilibrium (electrons and ions have Maxwellian

distributions with equal temperature, and the two-particle distribution

function is Debye-Hfickel). In reality the condition of thermodynamic

equilibrium is usually not met. In this case a more general theory

is desirable.

In this chapter we shall generalize Guernsey's "small-amplitude"

kinetic equation; by that we mean the following:

(I) The Maxwellian distribution function is replaced by an

arbitrary unperturbed one-particle distribution function, fo(T/),
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The Debye-Hiickel distribution function is replaced by an

arbitrary unperturbed two-particle distribution function

g0(W, 77', r - r'), where ?7 = (v, a), and a denotes the a-type

ions.

This allows us to eliminate the condition that the unperturbed state is

in thermodynamic equilibrium.

It should be mentioned that C.S. Wu 8 has used an operator method 7

to approach this approximation, and has developed a "useful" operator

for the same purpose.

2a° Basic Equations

We consider a gas of charged particles interacting only through a

Coulomb potential. An arbitrary number of ion types is assumed, with

N ions of type a (charge e, mass ma )" A "small" electric field,

Ea(r, t), is applied to the system; by "small" we mean that under the

influence of the field, the system has only "small" departures from its

unperturbed state. The system is described in general by the LiouviUe

equation, or the BBKGY hierarchy of equations derived from it by inte-

grating over the coordinates and momenta of all but one particle, two

particles, etc. To first order in the plasma parameter, <_s (u _D )-1,

the system may be described by the one-particle distribution function

f(y, t) and the pair correlation function g(y, y', t) [with y =- (v, r, a)]



t I }*

5

which satisfy the following first two members of the truncated hierarchy

equationsl: (The hierarchy is truncated in the usual 2-4 way by keeping

only terms which are formally of zeroth and first order in E. )

+

-_+v,.V,._ +v_: _ ,_ '

(I-l-a)

(I-2-a)

where the symbol _y_-_y') means that the expression in the curved

brace has the primed and un-primed quantities interchanged,

and the normalization has been chosen such that

(I-3)

Under the assumption of small departure from the unperturbed



state, Eqs.

6

(I-l-a) and (I-2-a) may be linearized by setting

f(y, t) : f0(_l) + fl (y' t) ,

g(y, y', t)=g0(71, Ti',_,r-r')+gl(y , y', t) , (I-4)

where f0 and go designate, respectively, the one-particle distribution

function and pair correlation function of the unperturbed state, and

fl and gl are their perturbed parts; with

I'll << I_01 , Igll<< Ig01

Now, we substitute the expression (I-4) into Eqs.

and ignore second-order terms in fl and gl as well as terms like

Ef 1 and Egl; then we obtain the following set of linear integro-

differential equations for, go' fl' and gl:

(I-l-a) and (I-2-a),

(I-5)

,
(I-O)
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7

_ eo- ,

(I-7)

Equation (I-5) contains only the unperturbed quantities; we shall use it

to express go in terms of f0 in the next chapter. In this chapter, we

shall concern ourselves with Eqs. (I-6) and (I-7).

2b. Reduction to Integral Equations

In order So deal with Eqso (I-6) and (I-7), it is simpler to pass

from the (r, t) representation to the (k, w) representation by taking

Fourier-Laplace transforms. Defining

(I-8)

and taking Fourier-Laplace transforms of Eqso (I-6) and (I-7), we

obtain the following set of equations °
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(I-10)

f:or'_._c'_,s"_,,-o)-fo'Z_.v'_g("r,,4_,_)]
_e____ +_:_._ ,_, _ _ , ,, , , ,

means that the immediately preceding ex-where the symbol k---,k'

pression in the curved brace has the primed and unprimed quantities

interchanged, and

(I-12)

o)

(I-13)

Now, our task is to solve Eq. (I-11) by obtaining an expression of

in terms of _, _[_ ]; then we substitute this_ [_'J: ] in Eq. (I-10)
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to obtain the desired kinetic equation.

Eqs. (I-10) and (I-11), we find the following:

that _ is completely determined by
o

But by examining the form of

(a) Eq. (I-11) indicates

f
G¢_ k, k' _)-Jd_' _(7, _ ~,, ~, e a' _ ', k, k' w) , (I-14)

(b) from Eq. (I-10) it is this quantity,

kinetic equation.

For convenience, we introduce the following notations:

(7/, k) = dT/"e a 0(77, 77 , ~

G, which is needed for the

(I-15)

_ _0(_ ) , (I-16)

and

j #

}
* +*A'J.

Then Eqs. (I-10) and (I-11) can be expressed as follows:

(I-17)
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° -F,.,) ! • (I- lO-a)

I I l

(I- 11 -a)

We further note that the Laplace transform defined in Eqs. (I-8)

and (I-9) requiresIm w _ 0. In order to simplify the calculations, we

let w approach the real axis from above (it is clear that the result can

then be analytically continued). From now on, we shall concern our-

selves with this limit. In this limit

-1
(¢0 +k. v+k' • v') _- 2_i6 (w +k. v +k' • v')

where

= _+L (I-18)

wRh 6 (x) denoting the Dirac delta function and P the Cauchy principal

value° Equation (I-11-a) can then formally be rewritten as
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w

(I-11-b)

In order to reduce to an integral equation for G, we multiply

Eq. (I-11-b) by e , and integrate it over 7/'; the result is
(l

For convenience, we defined"

(I -20)

(I-21)

where the superscript * denotes complex conjugate. Then Eq. (I-19)

can be expressed (suppressing the argument, o_ in G, q,_: ) as
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._'__'_',_',]_)
(_.v'+_ +_.v_+iE)

(I-19-a)

This is a singular integral equation for G; we shall find its solution

by using a technique from the theory of singular integral equations

developed by Muskhelishvili 9.

3. Solution to the Integral Equation

By examining Eq. (I-19-a) we find that the kernel of this integral

A

equation depends on v' only through the combination k' • v'. In fact

Eq. (I-19-a) can be written as

z_C-_-__,L)&¢_,_,_')_- _¢_, _ ,:_;>

(I-22)

where the '%arring" operation is defined as

_(u', k', k)-=l

Equation (I-22) shows that G is completely determined by G.

perferming the barring operation on Eq. (I-22), we find

dT?'ea, 5(u'- k'.~ v') G(T/', k'~, k) .(I-23)

By
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z_c-_, _'j_r_,_,_')

, _oU_(_<,,_."_u',._',_
(I-24)

m

where q, D O are defined analogously to G.

variable of integration from u' to - u', Eq.

__u.._, _,_,_A*( _ , )_c,.,.,
_-_, _;_)

Changing the dummy

(I- 24) becomes

(I-24-a)

Since from Eq. (I-18)

lim (1) I i 1)1E-O ÷ x:Fi --+i_ 5(x):F_l:'l x

thus Eq. (I-24-a) may be rewritten as

A*c-_-_" _ _c_,_ _'1= _.c_,_,_._'_

co +/_t_ - ./_-:_ )J
(I-24-b)

m

Furthermore, from the definitions of A and D O [ cf. Eq.

find

(I-20)], we

A = A 1 + iA 2 (I-20-a)

with
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(I-25-a)

i _o(U _ (I-25-b)

and

(I-25-c)

Hence, we may write Eq. (I-24-b) somewhat more explicitly as

-_-_ _')G(_,~_/A*(

Since Eq. (I-26) is to hold for arbitrary u, ¢o, k, k', we may inter°

change k and k' then replace u by - [ (w + ku)/k'] (in this order) to

obtain a second equation

(I- 2,7)
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In Eq. (I-27) changing the dummy variable of integration from u' to

- u', we obtain

-_,c -_-_,,_'){_c_,_,_')+

- _¢-%_",_'_,
(i-28)

Introducing the Hilbert transform operator

then we may write Eqs. (I-26) and (I-28) as

2( _: ,

f I.IFT_(_' _)]),, (I-26-a)

z_c_,)_ _ ,~,

k
Multiplying Eq. (I-28-a) by _-; then subtracting the resulting expres-

sion from Eq. (I-26-a), we find the following integral equation relating

_(- w-ku k' k)"G(u, k,~ k')and k7 , ~,
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;I+A2( jC)H

(I-30)

The singular integral equation of type Eq. (I-30) has been studied

in considerable detail by Russian mathematicians 9. However, much of

the formalism may be dispensed with in our case, due to the nature

of the coefficients, A 1, A 2. We will need the following result from the

theory of Cauchy integrals:

Let f(u) be any function satisfying a HSlder condition on the real

axis. Then the complex function

_'_ - lI°°(Z) = _-_

-o0

du' f(u') (I-31)
U' - Z

is analytic except on the real axis, which is a branch cut, and

where

Eq.

_:(+)(u) - "}'(-)(u) = f(u) ,

_-C_(+)(u) + _-)(u) = - i H[f(u)]

(+)(u) _ limE - 0+ (u + i e)

, (I-32)

(I-32) are known as Plemelj formulas. (cf. Muskhelishvili 11)



17

Before starting to find the solution of Eq. (I-30), we note that its

coefficients A1, A2 have the following interesting and helpful pro-

perties:

(a) From the definition of A[cf. to Eq. (I-25)]

_1= I+H[A2]

(b) Since f0 and its derivatives must vanish as Ivl - o0

lim lim

A l(u)= 1 ; A2(U ) : 0lul-_ lul-_

(c) It is assumed that AI(U), _2(u) are not simultaneously zero

for any real u (this is certainly true if f0 is Maxwellian).

We now turn to the solution of Eq. (I-30). We start by introducing

the following complex functions, which are known as Cauchy's integrals:

(u'- z) (I-33)

(I-34)

b_

(bd - Z ) ' (I-35)

' (I-36)
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.,__ (u'- Z)

Provided G and q satisfy Hblder conditions on the real axis these

functions are analytic except on the real axis, which is a branch cut.

As I Zl - _ the F's and the _'s approach zero, and

lim _ (Z, k) 1Izl -- --_ (I-38)

As Z approaches a point u on the real axis from above and below,

we have the following Plemelj formulas:

rl(+)(u)-rl(-)(u)=_(u, k, k') , (I-39)

rl(+)(u) + rl(-)(u)= - iH[G(u, k, k')] , (I-40)

k - u) - ku k' ,r2(+)(u) - r2(-)(u) = _ G( k' , ~, k) (I-41)

r2(+)(u ) . k [-¢_-ku k, )1"+ r2(-)(u) = - i _ H G( _ , ,_ , k (I-42)

The relations between the limiting values of the _'s are the same as

Eqs. (I-39) - (I-42) with F replaced by • and G replaced by _; further

2_ (+)(u, k) - _ (-)(u, k)

(+)(u, k) + _ (-)(u, k)

=iA2(u, k) ,

= 1 + H[_2(u, k)]

= A 1 (U, k) ,

(I-43)

(I-44)
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Since these relations hold for arbitrary u, w, k, k',._, we may inter-

change k and k' and replace u by - [ (w + ku)/k'] in Eqs. (I-43) and

(I-44); then we take the complex conjugate of the resulting expressions

to obtain the following relations:

(I-44-a)

Using the Plemelj formulas, Eq. (I-30) may be written as

(I-45)

Now the complex function

(I-46)

is analytic everywhere except on the real axis and vanishes as I Zl

But according to Eq. (I-45) the jump across the real axis is zero,

"* 0_o
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therefore _ I(Z) is analytic "everywhere".

be identically zero. Thus

It follows that _ l(Z) must

(i-47)

The Plemelj formulas with Eq. (I-47) could be used to obtain an

• k'explicit relationship between G(u, k, k') and G[- (o_ +ku)/k', ~, k l;

however, it proves to be more convenient to work with the r's with the

help of Eq. (I-47). In order to obtain the desired function, G, we pro-

ceed as follows:

(1) We go back to Eq. (I-22), and rewrite it in terms of the

Hilbert transform operator. Then we use the Plemelj

formulas to eliminate G and HI G] in favor of r's. Thus

we obtain

or

(i-48)
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but from Eqs. (I-43-a) and (I-44-a)

._ ) ,E) (I-49)

thus

, x ,_'J
(I-50)

(2)To determine r2, we return to Eq.

Plemelj formulas to express G, _,

(I-28-a) and use the

in terms of_ and F's

(-) f+) _-) (-)

(I-51)

using Eq. (I-47) to eliminate F 1 in favor of F 2 in Eqo

we find (for detailed steps see Appendix)

--cO-_Cl ' I-) (-;

(I-51),

(I-52)
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X(z)--- u' g (I-53)

and observing that

).((+)(u) - )-((-)(u) = h(u) ; (I-54)

then we may rewrite Eq. (I-52) as

Now the complex function

(i-55)

is analytic everywhere except onthe real axis and vanishes as

I Zl -* oo. But Eq. (I-55) implies that the jump across the real

axis is zero; therefore _ 2(Z) is analytic "everywhere". It

follows that _ 2(Z) must be identically zero. Thus

(I-57)

Letting Z approach the real axis from above, and Using the
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(- (I-58)

Substituting Eqso (I-58) and (I-52) into Eqo (I-50), we finally find

+

-_-_uo, Iz

where C is a path just below the real axis.

(I-59)

)

Now, we proceed to simpli-

fy Eq. (I-59). By using the relations

2iA2 1

IAI2 A"

1

&

and

a.2.

we may write Eq. (I-59) as

- _. (u)2(_)
3.



24

Since the integrand of the last integral has no singularity in the lower-

half u-plane, and vanishes as lul - oo; therefore, we may close its path

of integration in the lower-half plane with a large semi-circle; then

according to Cauchy's residue theorem, the last integral vanishes.

Thus

In order to simplify Eq. (I-60), we use the definitions of q and _'s

[cf. Eqs. (I-21), (I-35), and (I-36)]. As shown in Appendix we may

write

- 2_-(-)(T/ -w-_. V_,k ' k') , (I-61)q(_, k, k')- k' p ' k'

• 2 (+)(u) _1 (-)(u) 2_ (- ) - w-ku k,k' ,- = _ (h] _ k' ' ) (I-62)

with

_ (-,-)

( U, -CO-'hU-
,4_ S ; C_÷_ ,

(u"

(I-63)

and p as defined in Eq. (I-17). The substitution of Eqs. (I-61) and

(I-62) into (I-60) yields
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(I-64)

Equation (I-64) gives an exact formal solution for the perturbed cor-

relation function; in order to simplify it further, it is necessary to

introduce the explicit form of p [ cf. Eq. (I-17)]. The simplification

goes as follows:

By defining (note the argument w has been suppressed)

(7, k, k')=- ea_ r (7, k+ k') (I-65)

l /

+

, (I-66)

we may rewrite Eq. (I-17) as

(I-67)

Then
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-'-'_,,,-_-__<,_,__')_-_c,,-_-'' <-_,_,._,<)_

and

(i-68)

or by using the relation

2

_- --_ [_*(x, a)- z])(x, _) -_

-" (-,-) D_,, _ (-_ -)
. -¢o-_ -¢o-_u

(I-69)

The substitution of Eqs. (1-68) and (1-69) into Eq. (I-64), yields

(1-7o)
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Observing the last two integrals in Eq. (I-70), we note that the function

has no singularity in the lower-half, (upper-half) u-plane and vanishes

as l u] - 0o; therefore, we may close the path of integration with a

large semi-circle in the lower-half, (upper-half) plane. According

to Cauchy's residue theorem the former vanishes and the latter is

equal to

Therefore, Eq. (I-70).reduces to

du ( u, .fi, , ........_

r i"
., ,% (_-7_)

Equation (I-71) completely determines G (and hence the perturbation

_-_' to the correlation function) in terms of the initial perturbation, __ I'
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the unperturbed distribution functions, f0 and _0' and 7 (the perturba-

tion to the one-particle distribution function). Substitution of Eq. (I-7 i)

into Eqo (I-10) gives a kinetic equation forT, (i. e., the transform of

the kinetic equation for f) which is the plasma analog of the linearized

Boltzmann equation. However, it is more desirable to eliminate _0

from Eq. (I-T1). This can be done by solving the linearized equation

for _ 0' Eq. (I-5). We shall carry out this task in the next chapter.



Chapter II. Solution to the Equation for the Unperturbed Pair

C orrelation Function

As suggested in the preceding chapter, our procedure is to ex-

press the unperturbed pair correlation function,_0_ as a "function"

of f,0'the unperturbed one-particle distribution function. Then, in

the third chapter, we shall use this result to simplify the quantity G,

which represents the "collisional" effect in the kinetic equation as

derived in the first chapter.

i. The "Connecting" Equation for the Unperturbed State and its

Reduction to an Integral Equation

We recall that the equation which links the unperturbed func-

tions, go and f0 is Eq. (I-5)

a v v. a _( e af 0 07)0 m av r :r,)

lr - r" I 0 (r/'_T/"_._r'-_") + y--y'
o

(II-l)

Our immediate objective now is to solve for go in terms of f0" For

this purpose, we take the Fourier-Transform of Eq. (I-5) w_ r, t,

4-

e af 0 (T/)= 4_ o.__.. [e ' f0 (T/')
ma k 2 av,_, a

dr/' e " (T/ , 77 ', -k) ] + k.....(_k)

29

(II-2)
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Since ....

_) ( ei(-k) .x 7/' -I_ * _?' (II- 31}o (_"_" -_/-= / _ C}o(_', ',x/=_o (_', ',_)
J

Eq. (II-2) may be written in a somewhat compact form by employing

notations defined in Chapter I; i. e.

, 1/71 k 2 ( [D O 07',k) F 0 (77)- D O (z/,k) F 0 (_7')]

where_

(11-4)

+ D O (z/',k) G O (_.,k) - D O (_,k) GO* (_7'Lk)

we take E to be a small positive real number, which decides

the contour of integration in later calculations and then is put to zero

finally; moreover we let

F00?) = e f0(77) (11-5)

From the form of Eq. (11-4), it is clear that,0 is completely

determined by G O. In order to obtain an equation for G O alone, one

multiplies Eq. (11-4) by e ' first, then integrates over T/', and ob-

tains an integral equation for G O

I I1 1 d77' e(i
rrk 2

L

D O (T/', k)

k-v .v' + iEJ,_, m,' #-'

oo (n,k)

1 _[D 0 07'_.v-_. v,+ iE)
f- _J

- }- D O (rl, k)G O (_?',k)

Q

(11-6)

,k) F 0 07) - D O (r/,.k)F 0 (_7')]



L'

Defining

f
1 [ _ [D O 0?',k) F 0 (7/)- D O (_,k) F 0 (77')]

= -- Id (II-7)

(77,k) 77'e '

J

and using the notation _ defined previously (Eq. 1-20), Eq. (II-6) be-

comes

h(_.%k) G O (77,k) = _ (_,k)+

f

D0 (77_k) J G 0* (N'' k)

e ' (II-8)dT?' _ A
_'k 2 (_.v - k' v' + ie)

Since the kernel of this integral equation depends on v_' only in the

A

combination of ,._k• _v', thus it is clear that G O is completely deter-

mined by

G0(u'k) =idle 5(u-_.v) G 0(v_k) j
(II-9)

in fact Eq.

k)

(II-8) may be converted into (suppressing the argument

a (_. v) GO (U)=_ (v)+
D O (77)

zrk2

du _

(u' - _. v - iE)
rn,2

(II-10)

Performing the barring operation on Eq. (II-10), one finds a one-

dimensional integral equation relating G O and GO*



32

a (u) Go (u) -- _ (u) +

f

- ( G0* (u')D O (u) du'

_Tk2 _ (u' - u- ie)

(II-ll)

In order to solve Eq. (II-11), one writes 4, _, G O

their real and imaginary parts:

in terms of

A : 4 1 + iA2, _" = _1 + i_2' G0 = G01 + iG02 • (II-12)

One observes that through the definitions of _ and the barring opera-

tion

_2 (u)= _Ii dr/ e(_ dr/' ecr'[5

or

A A _(.V _(u - ,.,k"v) 5 (k'v.., - ... )]

• [D O (r/') F 0 (77) - D O (7?) F 0 (r/')]

e '[5dr/ e a dr/' (_ (u- v,)5 v,)]

'[D O (r/') F 0 (r/) - D O (77) F 0 (r/')]

By interchanging 7? and r/' in Eq. (II-13a) then

- JI1 ^

_2(u):_-_ dr/' ea' dr/ e a[6 (u-k.v_

= - _2 (u).

5 (_'v' - .-_'v)]

• [D O (77) F 0 (r/') - D O (r/') F 0 (r/)]

(II-13)

(II- 13a)

(II-13b)

So that

_2(u) = 0 )
(II-14)
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in other words _" is a real function.

derived relation (Eq. 1-25)

Using this result and the previously

one may express Eq. (II-11) in real and imaginary parts:

[4 (u)+ iA2 (u)] [_01 (u)+ i Go2 (u)] =_ (u)

+A2(u) {_du'!lP(u-_l u)+i6 (u'-ulCGoI (u')-iG02(u')]}

or in terms of the Hilbert transform operator, then (suppressing the

argument, u)

(A 1 G'-01- A 2 G02) + i (A 2 G01 + A1 G02)

m

F

"i HL_ 0 +2_ 1
L

By equating the real and the imaginary parts of Eq.

tains two integral equations

A1 G01- A2 HI,G011= "_ + A2 G02

(II-15)

(II-15), one ob-

(II-16)

and

A1G02 + A2 H ['G02] = 0 , (II-17)

These singular integral equations have the general form as the :

one we have encountered in the preceding chapter; therefore, they
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may be handled with the same techniques and treat them by a similar

method used previously. We shall solve them in the next section.

. Solution to the Integral Equation

In order to solve Eq. (II-17), one introduces the complex func-

tion

I G02 (u')
-- 1 du' _"
G02 (z) --- 2_--"i u' - z

(II-18)

then the corresponding Plemelj formulas are

G02 (+) (u) - G02 (-) (u) = G02 (u) (15-19)

-- (+) (u) + G02 (-) (u) : - i H [G02 (u)]G02
(II-20)

Through these relations, Eq. (II-17) may be re-expressed as

-- (+) (u) (u)- iA 2 (u)]-- (-) (u)[A 1 (U)+ iA 2 (U)] G02 : [41 G02 (II-21)

One, now, needs the relations

2_ +) (u)= A 1 (U)+ iA 2 (U) (II-22)

and

-) (u) = A 1 (U) - iX_2 (u)
(II-23)

which have been derived in the preceding chapter (Eqs.

- 2 .

(I-43) and
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(I-44)). Substitution of Eqs. (!I-22) and(II-23) into Eq. (II-21), yields

- (+)(u)-_(-)(u)_02 (-) (u)= 0_+) (u) G02

According to the theory of Cauchy integrals, the complex function

_3 (z)_ (z)Go2 (7./ (Ii-251

is analytic everywhere except on the real axis and vanishes as

!zl -oc. But Eq. (Ii-24) indicates that the jump across the real

axis is zero; therefore #_3 (z) is analytic everywhere°

that _3 (z) must be identically zero. Thus

,_._) (z) G02 (z) = 0

It follows

However,

lim .:;-_ 1

Izl _ ,_..,i(z)=

according to the definition of_._ (z) (Eq. 1-37); therefore

G02 (z) = 0 . (Ii-26)

Consequently, through Eq. (II-19)

--G02(+) (u) - G02 (-) (u) = G02 (u) = 0 (II-27)

in other words,

is a real function.

G0 (u) = G--01 (u) = G0* (u)
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As a result of the fact that G'-0 (u) is real, Eq. (!I-16) reduces to

A 1 (u) G0 (u) - A 2 (u) H [G0 (u)] : _ (u) .
(II- 16a)

Precisely as in the proof of Eq. (II-27), it may be easily shown that

the corresponding homogeneous equation of Eq. (II-16a); i. e.,

A 1 (u) G0 (u) - A 2 (u) H [G0 (u)]= 0

has only a trivial solution.

(II-16a) is unique.

NOW_

This implies that the solution to Eq.

we consider the solution to Eft. (II-16a).

duce a complex function

i Uo (u')G--0 (z)- 1 du' u' -2_i z

Consequently the Plemelj formulas are

U0(+) (u)- _0 (-) (u)= °0 (u),

G0(+) (u) + G0(-) (u) = - i H [G0 (u)] ,

Through these relations as well as those given by Eqs.

(II-23), Eq. (II-16a) reduces to

2 [_3(-) (u)U0(+)(u)-_(+)(u)_0 (-) (u)] =

(II- 22) and

Again,

(II-16b)

we intro-

(II-28)

(II-29)

(II-30)

or dividing Eq. (II-30) by
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then

1 [4 2 (u)+ 4(-) (u) =} 1
2 1 2

2 (u)] =_ 14 (u)l _=0

_0 (+) (u) to(-) (u)

(+) (u) _ (+) (u)

2[(u)

14 (u)] 2
(II-31)

Defining

(z) e 1 |
2_-'-i du_J

(II-32)

and observing that

T(+)(u)- T(-)(u)= 2_(u)

14(u) l 2

T(+) (u) + T(-) (u)= - i H
2; (u) 21I_,(u)l

(II-33)

then Eq. (II-31) can be re-written as

=0 .
J

Therefore, following precisely the same argument stated for the

function 43 (z) (Eq. II-25), we conclude from Eq. (II-34) that the

function

(II-34)
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is identically zero, or

G0 (z) --_ (z) • (z) (I1-35)

Substituting Eq. (11-35) into Eq. (11-28) and utilizing the Plemelj

formula, we finally gain the solution to the Eq, (II-16a); i. e.

_0 (u) = [$5(u), (u)] (+) - [_3(u) _ (u)] (-) . (11-36)

In the next section, the results obtained above will be used to find

the expressions for_0 and G 0.

o

which is defined by Eq.

Expressions for G O andS0

As a first step to determine G O

(II-7), in a more compact and convenient

form; i. e.

andS0, we re-express _,

2i _0(+) (+)
(_/) = _-_ [D 0 07) (_:.v) '-D 0 (_.v) r 0 (z/)].

(11-37)

By performing the barring operation on Eq. (II-37) then

- 2i _0(+) _0(+) --
(u) :_-_ [D0 (u) (u)- (u) F 0 (u)] 5

or by using the related Plemelj formulas

D-"0 (u)= _0 (+) (u)- D0 (-) (u)

and

F 0 (u)= F0(+) (u)- F 0 (u)
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then

2i g0(+) _0(- ) (-) -- (+)(u) = _ [ (u) (u) - go (u) Fo (u)] (II-38)

Presently in Eqs. (II-37) and (II-38) we utilize the relation

which was derived in the first chapter. As a result, we obtain

2i F0 (+) (_" A (k (7/) + F0 (7/) ,
0/) :_D O 07) v)- A.vv) F 0

(II_37a)

and

(u) = Fo (u) + _ (u) _0 (') (u) - _* (u) _0 (+) (u) (II-38a)

By introducing the notations

PO (7/, k)

F0 (n)

and (II-39)

PO (u) -=
FO (u)

Iz_(u)l 2

we may cast Eqs. (II-37a) and (II-38a) into different but convenient

forms; i. e.
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and

- F 0 (r/)+ P0 (_?) A*(k'v)

_0 (-) _0 (+)_(u) - (u) (u)

IA (u)[2:P0(U)+ A*(U) Zl(u)

(II-37b)

(II-38b)

Having completed the initial steps above, we proceed to find an

explicit expression for r (+). Through Eqs. (II-32) and (II-38b),

we find

2 [_o(-)lu') _oI+)(u,) 1
(u' _ _ a*(u') _(u') + P0(u')- : v - ie)

(II-40)

The first term in the square bracket has no singularity in

the lower-half plane, and in addition it vanishes at infinite in that half

plane (this also applies to the second term in the upper half plane).

Therefore, we can employ Cauchy's theorems to evaluate the inte-

grals by closing the contour with a large semi-circle in the lower

(and/or upper) half plane, and find

r (+) (_.V) : 2 0

Now the expressions G O

As a consequence of the fact that G O (u) is real,

"_o(+) _.v)

.

and_o can be obtained as follows:

Eq. (II- 10)

(II-41)

reduces to
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2iD 0 (_)

k2 (+) (II-10a)

Through Eq. (II-35) then

GO (V)=
(v)

k2 a (_.v)_ )

but from Eq. (II-23)

2_ (+)
A

-I

Therefore

i T(+)
+ _-_ D O (T/) (k'_,-,,v)

(II-42)

Substitution of Eqs. (II-37b) and (II-41) into Eq. (II-42), gives

2i _0(+)
G O (7?) = P0 (7) A* (_._,,,,.,v)+ _-_ D O (T/) (_,,."v) - r 0 (T/).

(II-43)

In Eq. (II-43) returning the suppressed argument k, and defining

2i - (+) (_'v,k)
Z 0 (_?_k) -= P0 (77, k) A* (_.v, k)+ _ D O (77,k) P0

(II-44)

We finally obtain

G O (7/,k)+ r 0 (7/): Z 0 (r/,k) .
(II-45)

By taking the complex conjugate of Eq. (II-45) and changing 77 to _',

we find
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GO*(V',D + Fo (V') = Z0* (_',k)

the expression forV0 can be obtained by substituting Eqs.

(II-46)

Finally,

(II-45) and (II-46) into Eq. (II-4); the result is

_0 (T/,_7,,k) = 1__ DO (z/',_) Z 0 (7/,._) - D O 0?,k) Z0* (T/',k)

2 ÷

Now, Eqs. (II-45) - (II-47) show that we have expressed the

unperturbed pair correlation function in terms of unperturbed one-

particle distribution function. In the third chapter, we shall use

these results to simplify the quantity G which is needed in the

(11-47)

kinetic equation.



Chapter III. Explicit Evaluation and Further

Reduction of the Expression G

In the last chapter, we obtained the expressions for G O andS0 as

functions of f0 (the unperturbed one-particle distribution function). As

suggested there, we shall utilize the results obtained to eliminate the

quantities G O and _0 from the expression G which is given by

Eq. (I-71). As a preliminary procedure, we shall introduce some

short hand notations, and collect all the necessary equations (which

were derived previously) as well as rewrite them in somewhat rn,_re

suitable forms.

List of notations:

_(_/', k' 2.k)-4 1--
e t

;k" _-_ (77', ._k +k') , (III-1)
m O. _

e ' e '

Dl(7/', k) = mC_' D0(_},, k) ," pl(_}', k)= _ p0(T/', k) , (III-2)
(T (Y

2i . (+)_

Z0(7/, k) = p0(_/,k')_*_'v,k)+ _-_D0(_/,k)_ 0 (k_'v,k),(III-3)

ect'

Y1(77" k) e m ' Z0"(77 ', k) , (III-4)
(T

-co-kul k' _(-)(u,k, c0-ku k' k) ] (III-5)

We had the following equations:

43
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Z0(_?, k)= F0(_I) + G0(_?, k) , (III-6)

, (m-7)

(m-8)

=¢-'-_?_-" -_ _, _'I-_(_;_, _)_,

¢_-_,-_1_'¢-_'_,_'I_*<_,_)

,<)

(III-9)

where we have used the notations just introduced above, and have sup-

pressed the argument k + k' in E.

1. Elimination of G O andS0

In Eq. (III-8), we replace G O andS0 by the corresponding ex-

pressions given by Eqs. (III-6) and (I_-7) respectively. Then Eq. (III-8)

reads

P(_/,_/ ,._,~, ,_/ S01,_/',k,k') + (III-lO)

where
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(IH-11)

By defining

Sr(r/, T/', k, k') - 8(7/'~ ~ , _, _', _) (HI-12)

then by means of the appropriate definitions, we have"

u", k, k')= _(u" k' k)Sr0?, ~ , 7, ~, , (III-13)

', k' k)Sr(U', u", k,~ k')~ =S(u' u', ~, , (III-14)

and

-(-'-) w-ku,
Sr(U, - k_ k,k')

=(-,-) - w - ku
= S ( k' , u, k'..,,k ) .(III-15)

The new form of P given by Eq. (III-10), with the aid of Eq° (III-15),

enables us to cast Eq. (III-9) in the following form:

2 7[ F F) -- (-)

-_J4r L £')-_ Ecv,

-- (-'-)_t._-_.U I _ (-j-) _ /

5u,,.,_ 4,_/.,-__,._,--_-'-"_,s',_)-Bo_,_
(_-_._)ZC(-_-_ _')_,(,,_)

4; '

(hi-16)

where
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(III-17)

We recall that _I

function.

Having eliminated the G O

is the initial perturbation to the pair correlation

and _0 from the

task is to simplify the obtained result.

explicit forms of S(-), S(-) and S (-' -) In the following sections, we
r '

shall derive them from the appropriate definitions with the aid of the

symmetry relations, Eqs.(III-13) n(III-15).

expression G, our next

To achieve this, we need the

2. Expression for S and
r

To obtain S, we perform the barring operation _. r. t _? and k on

Eq. (III-11), and find

S(u, 77' ,~k, k')= (nk2)-1Z0 (u, k){U (Zl ', k'~, k)-E. _a [D 1 (zi ', k)(u-_, v+ ie)- 1 ]]

k2)-l_o(U) a [ ~. ~, - ] .(III-18)+ (_ E._-_ Y10?',k)(u'_ v +iE) 1

To advance further, it is necessary to introduce the explicit form

of Z 0, which may be obtained from Eq. (IH-3) by the barring operation,

• 2i (+)

Z0(u, k)= _0(u, k)A*(u, k)+ _-_ 50(u) P0(U, k). (III-19)
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By utilizing the previously derived relations,

2i 5 (u) = a(u, k) - _l*(u, k)
k 2 0

(III-20)

and the Plemelj formula

(+) (-)
N0(u)= _0(u) - N0(u)

m

we express Z 0 in such a form that will be suitable for later calculations;

i=e.,

(+) (-)
z0(u, k)= _0(u, k)A(u, k)- _0(u, k)A*(u, k) . (III-21)

With the aid of Eqs.

the following form"

(III-20) and (III-21), we may cast Eq. (III- 18) into

-- @

LJ;rmgJA(o_,_)-?o(m_,)A(_.,' ' '

' Y_ (_'/-'_)1 (III- 22)

In Eq. (III-22) interchanging k and k' and changing 17'to 17; then

using the symmetry relation, Eq. (III-13), we get

(III-23)
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With the results of the last section, we shall derive

S (-' -) By definition

S(-) and then

S_u., ,_,,t.')-z_z,,, .j u'-u.+zE
(III-24)

Using Eq. (III-22) for S,

-- (-) # e

--(+) I it I -X_.-) # ,i _ #
I ('u.' [_.)/_/,_)-J_'of_,_)_(u_l)_('.. ,.,_. _._ r]),f'l',b) l'}

- _"_3<' _' cD.'-u.+_+) 17_'_'+__'_-_-+Jj(111-25)

[A(4"_)-A"C4t.l]
(u'-U-iZ.E) - _ L_.'-:t'_+_;_

The "initial" terms in the first and second integrals are analytic in the

upper-half plane, and in addition they vanish at infinity in that half

plane; therefore, they contribute nothing to the integrals according to

Cauchy's theorems. Consequently, Eq. (III-25) reduces to

-<-_ ' ' l,' _ ,,,;.)/l(u,_j
$r_<,_,A,!)=-d _{'(u'-u+Z+)Libl,'_',J)

+ J
(III-26)
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Again, the first integral can be evaluated by the residue theorem,

following a similar argument as above; while in the second one, we

substitute Eq. (III-4) for Y1 and then add a null integral

F107')_d
2_i u' 1 A

(u' - u + ie)(u' -k. v + ie)

in the curved bracket. As a result, we find

A

Since there is no singularity at u' = k • v' the only singularity possessed

by the integrand is at u' = u. Therefore, by closing the contour in the

lower-half plane and applying Cauchy's residue theorem, we obtain

,,.Z(,.,.,f,..)h(.>.s;A),-_<_>.=<-J,.,
._ \ -__., L%,'_,,_)-5¢:t.,v.,;_Ji

(m-28)

In order to utilize S (-) to calculate S (-' -) we re-write Eq. (III-28)

_n a more compact form by defining

' k k')_ (_k2)-lf]_(17L(u, 77 ,._, - o ^ -1]_',k',k)-E ._-_[ Dl(l? ',k)(u-k. v' +ie) )

(III-29)
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and by using the definition for Y1 [ cf.

becomes

Eq. (III-4)]. Then Eq. (III-28)

By definition

(III-30)

_(,) k,J <)_(u, - 0o- ku
k' ,k,k'):_ dr/'e a'S(u, _ ',k,k')/(k' • v'+ w+ku+i¢)

(III-31)

Hence, by substituting Eq. (III-30) for S (-) we have"

(-"->-_-k____Z

l _ -E "' _ /fc_; '¢_-, ,__

(III-32)

For convenience, we use the Plemelj formula to write

and define

. _E _ [ ]) (III-33)._, Y_c_>(_-_._,+z_-_
)
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_(u,
k' )= 7/'e ' "v'+_+ku ie L(u,k +

' k k'_
_ _., I , (III-34)

k_ ) = _ dT/'e F 10/')(u-(7
)-1• v' + iE

" "-_, • v + k- -V- +iE

(III-35)

where in defining _((+' +), we used the fact that the function L[ defined in

Eq. (III-29)] is analytic in the upper-half of the u-plane. In terms of

these new notations, Eq. (III-32) reads

S(-, -) (u,-W . ku_ ,k, k')

: _ (u,k) +'+)(u, _ +_ku__V0(u,k)_ (u, _ + kuk' / k' ) : (III-36)

+A (u, Wk,+ku.)

In Eq. (III-36), by interchanging k and k' and then replacing u by

- (w + ku)/k' (in this order), we immediately get

_(-,-) - _ - ku, k'( k' u,_, k)

: ,_ (- ,,.,- ku I (+'+) - "- ku - - ,,.,-kuk' , k') .)..( ( k' , _._:u)- PO( k' , k_)
L (III-36-a)

¢_,.(- w - ku )1 - kuk_ , - u +A( w -k' , -u)
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With S(-' -_ in these forms, some of the u-integration in (III-16) can

be done by contour integration. As shown;inthe Appendix, we have

the following result:

1'>" __ll.t) -_ V '_'_;'_( ",c;.. tk!e__-_7:::,,"-:.7__
(III-37)

_-, - ,. <o+_u.'l[ _ -- :_' •

where we used the symbol Iu k--+k' ; 1- - (co+ ku)/k' to mean the following:

in the immediately preceding square bracket, the arguments k and k'

are interchanged and then the argument u is replaced by - (w + ku)/k'

(in that order), and

C(U, cO+ ku,_ )- B(u,
- co - ku. co + ku

k7 ) - A(u, k' )-A(- co - ku-k_ , - u).(nI- 38)

. Expressions for S(-)[17, -(co + k- v)/k',k,k'] and

_(-) [7 - (co+ k. v)/k',k,k']r

As an introductory step in deriving the expression of
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S(-)[ 77, - (w + k • y)/k',k,k'], we write S(_, 77 ',k,k') defined in

Eq° (III_ll) in terms of L. This is done by using the definitions of

the functions Z 0 and L. The result is

! k k'_ =S0?,_ ,._,~ ,
t

t" (_:. v,k)]-1 2i _(+)(_. v, k D0(_/,k_F0(_) +
(III-39)

A

L(k" v,
(_k2)- 1D0(T/ _-_ I7_ YI_!" J

' k k ) + ,k)E a k)
• v .., v'+ie)

By definition

) , - (w +]_)k, -= 'e ' S(_,_?',_.,k k')
k' dr/ a{k' • _' +w +k ° v +ie) °(III-40)

Substituting Eq. (III-39) S, and then utilizing the definitions of Eqs.

(III-33) and (III-34), we find

§(-)[7, - (_ +_. v)/k', _, _']

=[A_ ° v,k)] -1 F0(_)_[ _" v, (w +k" v)/k'] (111-41)

2i + ^

+ k-_ D00?,k) _(+' )[k" v, (w + k" v)/k']

New the final expression which has to be derived is

_(-)

S r [_/, -(w+k ° v)/k',k, k']. By definition

_¢') t s

r,7, ]

- '-= _ _ 5r ('7, u,

(III-42)
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yields
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(III-23) for Sr(fl , u', k, k') in above equation,

(-) #

i r--(*) , .-I _(-)

/ U/ P •.,., J

'4-
.__.._.IId # . / ¢ ._ /, /

(III-43)

Following precisely the same argument and method in the derivation of

F,q. (III-26), we find that the initial terms in both integrals have zero

contribution; therefore l_.q. (III-43) reduces to

(ni-44)

-4-
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Following a similar procedure as in the derivation of Eq. (III-27) the

first integral can be treated by the residue theorem; as for the

second integral, we introduce the explicit form of Y1 [ given by

Eq. (III-4)], and add a null integral

' k'u+w+k" v+ie "Fe'° U-_'' v+i

to it; consequently Eq. (III-45) changes to the following form:

(-)

Ix
Now it is clear that there is no singularity at u' = k'

(111-46)

° v in the inte-

grand. Consequently, Eq. (III-46) may be re-wrRten, for the sake

of convenience, in terms of Y1 as the following:

(111-47)

the integral can now be evaluated by the residue theorem, following

the same argument which we have used so many times previously.

Then Eq. (III-47) reduces to
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m

where the "operator" _ is defined as

(111-48)

(111-49)

5. The Kinetic Equation

The results just obtained in previous sections permit us to ex-

press G as a function of f0' _7, E, and_l. By substituting

Eqs. (III-37), (Ill-41), and (III-48)in Eq. (III-16), we get (retxirning

the suppressed argument, w)
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with

k' w)E -:Z(k+ ,

At this point, we are reaching the final step in the derivation of

the kinetic equation. We now return to the Eqo (I-5). The form of

this equation prompts us to change the arguments of G from k and

k' to K -= k + k' and - k' respectively. By doing so, the G takes the

following form:

+

,,< _, ,_')
, _,: _'TJ_,, _,)'1

(111-51)

where the operator _1 is obtained from Eqo

by K, and k' by - _.k", while E now is E(k, co).

for G in Eq. (I-5), we obtain a linear integral equation for_

VrI0" _ _v/ 0,.,.,. 0

_._ _'_ ,..,.

(III-49) by replacing k

Using this expression

; ioe.,

(111-52)
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This resulting equation for _ is the transformed version of the

desired kinetic equation. In general, this equation is in nature simi-

lar to those equations which usually appear in transport theory.

However, this equation is valid for inhomogeneous and/or arbitrary

frequency systems. Furthermore, it includes the two-particle

correlation effect. Therefore, it is suitable especially in the

determination of the high-frequency transport properties of a plasma,

as well as in handling the correlation effect on the damping of plasma

oscillations. We shall apply it to derive a generalized expression of

the high-frequency electrical conductivity in the second part of this

thesis. As for its application to the problem of correlation damping

effect, this is reserved for future work.



PART II. APPLICATION OF THE KINETIC EQUATION.

Chapter IV. High-Frequency Conductivity of an

Inhomogeneous Non-isotropic Plasma

1. Introduction

The classical electrical conductivity of a plasma has been de-

10-15
rived by many authors Their treatments usually started with

either the Fokker-Planck equation without collective effects, or the

generalized Fokker-Planck equation (including the collective effects).

The derivation of the former equation is based on an analogy between

the motion of charged particles and the Brownian motion 14. This

approach assumes that the characteristic macroscopic time scale

is much longer than that for microscopic fluctuations (which are of

order of the reciprocal of plasma frequency). The derivation of the

latter equation is based on the Bogolyubov's adiabatic hypothesis.

However, in a high-frequency field, both the one-particle distri-

bution function as well as the joint two-particle correlation function

are oscillating at the driving frequency. Moreover, a plasma is

capable of sustaining macroscopic oscillation at or above the plasma

frequency. Therefore, the electrical conductivity calculated by the

methods mentioned above is not valid at high-frequency. This fact

initiated new approaches to the calculation of the high-frequency

conductivity of a plasma.

59
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The classical approach to the rigorous derivation of the high-

frequency electrical conductivity has been treated by using Guernsey's

equation 16, and by employing C.S. Wu's operator 18' 17 Nevertheless,

all these results have been established under the assumptions: (a) the

system is spatially homogeneous,and (b) the unperturbed one-particle

distribution function is isotropic in velocity-space. Furthermore,

the approach based on the application of Guernsey's equation im-

plicitly assumed that the unperturbed state is an thermodynamic

equilibrium, (i. e., electrons and ions have Maxwellian distributions

with equal temperature). In contrast, we shall derive a general

expression for high-frequency conductivity which is not subject to

those restrictions through the application of the kinetic equation

derived in Part I.

We shall show that cur result reduces_othe results obtained by

the previous treatments, if the proper assumptions mentioned above

are made.

2. Scheme of Approach

As a preliminary procedure for deriving the high-frequency con-

ductivity for an inhomogeneous and non-isotropic plasma, we look

.for the high-frequency limit solutions to the kinetic equation derived

previously. By high-frequency limit, we mean that the driving

frequency, w, is much greater than the collision frequency, (1/tD),



(where t D

i. e., wt D

perturbations by setting _I and_Ifrom the initial

kinetic equation reads

61

is the cumulative 90 ° deflection time defined by Spitzerl4),

>> 1. For simplicity we shall neglect the contributions

to zero. Then our

(IV- 1)
e

m afo(rl) J.k'
cr . 1 o 0_G0?,K, -k' co)

(¢o+k'v+ie)_N _v_ +_2 2i dk'_,2-,, 0v_ "_' '

with

(IV-2)

and

E _ E(k, w)

An exact solution to Eq. (IV-l) is too difficult to obtain because
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of the complexity of the equation. However, in the high-frequency

limit*, approximate solutions may be obtained by an iteration procedure.

This is possible due to the fact that, in this limit, the collision term

(the terms containing G) is of order (1/wt D) compared to the other terms.

Thus, to zeroth order in (1/wtD) , _ is simply given by

(0)(n ,k, ) :

e

a fo(n)m E(k, o.,)•
O"

(w +k ° v+i_)
(iv-3)

In this order of approximation there is no collisional effect,

hence we must proceed to next order in 1/wt D. To this end, the first

iteration is obtained by substituting Eq. (IV-3) into Eq. (IV-2). We

thus have an explicit solution for G (which will be denoted by G (0))

as a function of f0" Then this G (0) is used in Eq. (IV-l) to produce

the first order (in 1/wtD) correction term (which will be denoted

by_l))to_ ;i.e.,

e

,k, co) - 1 m k' 0
2_ 2 (w+k--_v+iE _-_G(0)(7},K,-k ' w) (IV-4)

___ _ t . _-" , •

Then these _0) and _1) will be used to derive the desired ex-

pression for the conductivity.

A similar treatment for the low frequency limit is also possible.
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Explicit Expressions for G (0) and _(1)

Substitution of Eq.

argument, w)

(IV-3) into Eq. (IV-2), yields (suppressing the

,c(°) LvG(0)07,K, -k') : - _ (17,K,-k') - iE(0) .°Q1 1071 -k')

2 -(-)-( w-_'_ k') ! 1
k,2 P0 k' ' k; v(0)

(7

L
,_,-_'/+ _/0_.Q i, (_ -_'I},. .... .v ,1 1 '

+ 1 +
k '' -' k l

_o)(7 ,K, _')

2: r0(') _(0) _. __L+K'_z) !
k' _l(K • v,K) _ (..+. v, k' "

/ , ._ .. ,i : -/'..#ol :,j_,ll : _ " f '"" )7"k "l_"_--i"-_l "

?,,.t,,;_)((u-:?--7-_-,/_{:.i'.)i,_(u,,,./,%-:77- +' " '
--: .........dot -"--.'- ....v._..........L............"_'--.ILL'_......'!,: . Lt(_ ._(:<.j_..<,),/(,I

•'" , (u-_,v)-_<.,-k'_,:E)L+(,:.I,<.) ,
uc """' 4" ' (w-5)

where the superscript, (0), indicates that in those terms ._ is being

replaced by .__(0). Having made this substitution, we immediately

obtain the following results through the appropriate definitions and

some algebra [ detailed steps are shown in Appendix B] •
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"-Jc (_ ) u,K)

-_'__E'°._{_zL:_;_ _(-_'_')_:_)- 2/fi:,

" L I_,z'_,_ -co-)

4-

'k--h I (7/ ,.._.)
(co+k" v' +iE) 2

(zv-6)

OJ)

Z(o)
(u 3 ca + K_I4_" )

X E'°_f [ ' " '

_ id:_',_;_ I

(IV-8)

where

dl(_/',K_ j,k) =

bl(_/',k) =

DI(_',K)

(w+k" v' +i_) 2

2

(e)a4_2

(¢o+k ' v' +i£) 2

Or by defining
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K2

then

65

_+{<u
k' )

dr/'e ' 1 (r/', K ; k) + (k. K) b 1 (r/',k)

cr I (-k' • v' + w + Ku + iE)

(IV-IO)

k'd I (, ',K; k)-_
Ku-K.v' + i_)d

_o _+__ku___, (o) ( _+ ku))(u, k'J -_E "£1 u, K_ . (IV-8-a)

In Eq. (IV-10), interchanging K and

- (w + Ku)/k', we find

- k' then replacing u by

;.,I-_ _'_, -_)

___ [ ' I • • ( ]

4-

(IV- 10-a)
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At this point, it is advantageous to condense the long tedious formulas.

After examining the form of G(0) in Eq. (IV-5) as well as the results

which appeared in (a), (b), and (c), we introduce the following nota-

tions"

(IV-12)

(IV-13)

(IV-14)

4-

(IV-15)

÷ ?_' _, ,_L,(_, -_)
(_, _')

(IV - 16)

In terms of these notations, Eq. (IV-5) reads (after returning the
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G(0)(T/,K,-k', w)= E(0)(k, w) •

5

i=l

Ri(v K,-k' _) (IV- 1"/)

By the substitution of Eq. (IV-17) into Eq.

1/cot D correction to _ becomes

(IV-4), the first order in

_ _ _./__ _'
-

(IV- 18)

4. High-Frequency Conductivity

Having obtained the zeroth and the first order approximations to

the one-particle perturbation, the next goal is to find the correspond-

ing order approximations for the electrical conductivities. By

definition

d_e v j_ (77k,_)

Utilizing Eqs. (IV-3) and (IV-17)then
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'_t) Co) j. I
e 0-

2

(iv-2o)

where

5

R - _" R. (IV-21)

i=1

Now, by comparing Eqs. (IV-19) and (IV-20) with the Ohm's Law,

j=E'a

We finally obtain the zeroth and the first order approximations for

the, desired conductivity:

J
(IV-22)

_j--¢l) I

(IV-23)

and

_(k, w) = ,_(0)(k, c_) + _(1)(k, w) (IV-24)
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From the definitions of the R's [cf. Eqs. (IV-12)-(IV-16)], we observe

that they are only functions of f0' _-k' ~k', and w. Therefore, for a

given form of f0' the electrical conductivity tensor can be calculated.

Finally, by comparing the present analysis with those previous

ones which were treated by Oberman, Ron, and Dawson 16 (hereafter

denoted by ORD), as well as by C.S. Wu, and Klevans 17' 18(here-

after denoted by KW), we may list the distinguished features of the

present work"

(1) The spatial inhomogeneous effect is taken into account here.

(2) The isotropic assumption for the unperturbed one particle

distribution, f0' is not used in our derivation.

(3) We obtain an electrical conductivity tensor instead of a

scalar conductivity. Furthermore the form of the applied

electric field, _(r,, t), as well as its orientation is not

specified in our analysis.

(4) Our result applies to systems with an arbitrary number of

species. In addition, it also applies to non-isothermal

systems with arbitrary unperturbed distribution functions.

It should be mentioned that the last statement does not apply to

KW's 18 result. In the next section we shall show how our result will

reduce to those previous ones, if the appropriate assumptions are

made in our formulas.
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result... By taking this limit our result reduces considerably.

Eq. (IV-23) reads

70

Spatial Homogeneous Case with Non-isotropic f0

The spatial homogeneous case corresponds to k- 0 limit in our

Then

or integrating by parts,

_253

In Eqs. (IV-7) and (IV-9) taking k- 0 limit, we find

(IV-25)

2

C,o_4-r. _']-,}v10'I J_qo-' .

(IV-26)

Then Eq. (IV-10) reduces to

,7
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thus the barring operation can be done with the result

(IV-27)

Similarly, Eq. (IV-10-a) reduces to

I_ f / 1-_) ;! F--_-, _T.(-, , u') (IV-27-a)

where the identity DI(T/,-k') = - Dl(_/,k')has been used. Conse-

quently, ink - 0 limit, the R's defined in Eqs. (IV-12)-(IV-16)

reduce to the following forms:

i

2

(IV-28)

(IV-29)

or by using the previously defined relation

2i 0(-)

then
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(IV-29-a)

' Lug.(---C,-J- j.G._JJ
)- qg_ * -_o-._<_, _':v '

(IV-30)

.,4)= -_-g
i'c._#f'

lpJ_,~)I [a_,'e,
' _-SJ- s'_vl ' 4 _ I '

(IV-31)

In the second integral, we change the dummy variable of integration

from _?' to - 7/'; then we carry out the barring operation in Eq. (IV-31),

and find
-t

_ _ _-_'_'___iI _,__(_'_'_], ,_ ,.--.,-,..,i_,_ _,')
¢,I_)

I ! .

-_ (-u) ,___

+_+]_t_ .

(IV-31-a)
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By changing the dummy variable of integration of the second integral

from u to -(w + k'u)/k'; then Eq. (IV-32) reads

By defining

(IV-32-a)

e
a

D2(7/,k') = _-- Dl(7/,k') ,
(7

e

F2(7/) = _ Fl(7/)m
ff

(IV-33)

and utilizing the reduced forms of R's just obtained; then we can

perform the 7/-integration in Eq. (IV-25). The results are:

_ 2__( - l-_c-/__-_'__,, -_"-_ _',_
-(_'rJ d_fU)kao c :# , J - # ,-u,_J__,

(IV-34)

or since by definition

_a _ &'- ,,i ' _,lu)a.'- _(u'_;)

- /<t<,'Dr<<,!,:
,J

and
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- fo!4CI
U'4- Ll-.i-i (-

= .j,i,,'_;Io,i_'JD, (-_')

hence Eq. (IV-34) becomes

(IV-34-a)

jet "' _' 2E ( - -<->-<_-_a -'-'%-_ _' co-l'_ o', ^" ,

(IV-35)

(iv-36)

e<r ,, 12,,.

,_u,_')
(_v-37)

(lv-38)
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The appearance of Eqs. (IV-34-a)-(IV-38) shows that the k' is the only

factor which has the angular dependence in k'-space. Therefore, by

substituting Eqs. (IV-34-a)-(IV-38) into Eqs. (IV-25), we may perform

the angular integration in k'-space. Moreover, we write

R

-- = (IV-39)k' w ,

and suppress the argument of k' in A, A*, and P0" Then we find that

the first order conductivity reduces to a form shown below

_ _ Iw u)-Dl (U)j +
(IV-40)

In the next section, we shall show how our result can be reduced to

the one derived by Klevans and Wu 19 by assigning isotropic assump-

tion for f0(_) in Eq. (IV-40).

6. Spatial Homogeneous Case with Isotropic f0

The isotropic assumption for f0(_/) produces some useful

identities:
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_i(-u)=_i(u)

1 1
, ; i= 0,1,2 (IV-41)

4(-u)= _*(u)

Utilizing these identities, and recalling that

F0(u)

_o(U)--l_(u)12

then Eq. (IV-40) reads

-- r_(÷) _(+) 7 -__ r--s-) --_+_ 7A("),£_ (u) 12(w+u)A_lu)

_(w+u_ A(u) Z#(u)

(IV-42)

Since F0(u ) and IA(u)l 2 are even functions of u; while D 2 (u) is an odd

function of u; thus

I /'2"_:_ -- --

du F0(u) D2(u)

IA(u)l 2
= 0 (IV-43)

Therefore,, by using the Plemelj formula

D2(u) = D_+)(u)- D_-)(u)
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in the first term of Eq. (IV-42), and then utilizing Eq.

may cast Eq. (IV-42) in the following form

(IV-43), we

Coo)= ......

/A(w+u),_(t.,.)

(IV-44)

where

_j(w,u) = 5(-)(u) - 5!+)(w + u)j 3 " '

j = O, 1,2 (IV-45)

_j(w,u):_!+)(u)-3 _!+)(w_+u)

In Eq. (IV-44), we add a null term,

h.

fr0(u) _2(w, u) - F 0 _2(w, u)

a(w + u) a*(u)

in the curved bracket. Then we use the relation

A(W+ u) - A(u)= - _ _o(W + u)
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Further simplification can be accomplished if there are only two

species, electrons and singly charged ions.

tions then

Under these two condi-

f00?) = e /b0fa(v_)FO(77) = ea a

Through the definition of barring operating

6"

a = e, i for electrons and ions respectively.

appropriate definitions, we obtain

(IV- 47)

Similarly, through the

L (IV-48)

where ¢_ is the plasma frequency of the a-type species by conven-
a

tional definition;

c ,J ; (IV-49)

g-

' (iv-5o))

(iv-51)
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(nr-52)

Then from Eq. (IV-45), we have

(1V-53)

By using Eqs. (IV-47), (IV-48), (1V-49), and (IV-53), we obtain, after

some straightforward calculations, and suppressing all the arguments

[ detailed steps shown in Appendix B]

/4E)z i --C,J_

> (IV-54)

where

,.,2 2 2
CO =CO. +CO

1 e
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Substitution of Eq. (IV-54) into Eq. (IV-46), yields

+-{,_ ,4(w+u)la(u_l_ -

(IV=55)

Utilizing the relations

z;eno I<+_)'_¢,.+ F

+

(_+u)la(_)

(IV-56)
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As shown in Appendix that by utilizing the relations

Af_)-A(w,u) =

2Z

=Ii. J_(u)l _ tt 4c'ull_ -0 .,

the integral in the curved brackets vanishes. Therefore,

÷

J j

4(w*u)A (u)

(rv-57)

Eqo (IV-57) is equivalent to Eq. (IV-14) of Ref. (28) which was ob-

tained by using an operator method. The different appearance is due

to the different definitions-

(1) Klevans and Wu's 18 definitions

]D4.) , _ _Da-(u')_. (u) -- UI
- Ul -U -T-[._
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i _t
E(t) = E 0 e

(2) Our definitions

_) (u)-_-- 4.Ir.ze--_-__ #(u,)DI¢-

_- m)= 27ti (,,('-u_,e

and

In Ref.

to ORD's 16

(18), Klevans and Wu have shown that Eq. (IV-57) reduces

result if the thermodynamic equilibrium assumption is

used.



o Derivation of Eq.

(1) From Eqs.

(1-52)

APPENDIX A

(I-47), we have

rl(-)(u ) r2(-)(u )

D(-)(u,k) D(-)*[-(w+ ku)/k',k']

(2) From Eq. (1-51), we have

(A-I)

[r_+)(u)-r_-)(u)]+iA2[-(_-ku)/k',k']

k _(-)= _-_ q [-(w- ku)/k',k'~, k]/ (u,k)

r_-)(u)/_ (-)(u, k)

(A-2)

Using Eq. (A-l), we may eliminate the factor [ r_-)(u)/_(-)(u,k)]_(3)

:from Eq. (A-2), and find

(4) By using Eq. (I-43-a) in the 1. h. s. of Eq. (A-3), and Eqs.

(I-43)-(II-44-a) in the r.h.s, of Eq. (A-3), we immediately obtain

Eq. (I-52).

II. Derivations of Eq. (1-61) and (I-62)

(1) From Eq. (I-21), we have

83
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q(_/,k,k') ==i
p(r/, 7/', k,_;')

(w+k'v+k'. v' +ie)
(I-21)

-2_ (-)[: k---T-F ,, - (_+k. v)/k', k,_'] (I-61)

(2) From Eq. (I-35), we have

_,__,_-')i¢_e_(_,__;_(_,_'_ (A-4)

Using Eq. (I-21) for q then

.... v_)[L' -llJ_e_c_ '
.L

tl_- 'cJU"

(A-5)

(3) Similarly from Eq. (I-36), we have
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(A-6)

In Eq. (A-6), we interchange T/, and ?7'

relation,

, and use the symmetrical

= , 'kk') ;P0/',?7,k',k) p(Ti 7/ ,_,

then we find

">=-£-7-_'JLu':-u-x, '7'ed _' T'

,..A_'.__ )) (A-,)

In Eq. (A-7), we replace u' by - (w + k'u")/k, and u" by u', then we

obtain (after doing the barring operations)

T ('19 u )

(A-8)
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(4) Subtracting Eq. (A-5) from Eq. (A-8), we obtain

_2#) (-)

(_t)-- _j (U)

(.£u+_ +4'u'?_e)(u'- u-,_) (I-62)

_ 2_ _-'-J -_ _ .g,)

III. Derivation of Eq. (III-37)

(1) Utilizing Eqs. (III-36) and (III-36-a) for the first and second

terms in the u-integration of Eq. (III-16), we then end up immediately

with

[ £J_°tf_'- )1t"
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::(- - ku, ,)The function & Wk., k is analytic in the upper-half u-plane,

and likewise _ (u, k) is analytic in the lower-half u-plane. The functions

+)( ¢o + ku ).((% +) -co- ku u) enjoy similar.) +' u, k' )and ( .._, , properties

respectively and in addition vanish at infinite in their half-planes of

definition. Thus we can employ the Cauchy's theorems to the first

two integrals by closing the contour of the first (second) integral by a

large semicircle in the upper (lower) half plane. We then obtain

= 2rci

Jc

,

(h-9)

(2) Substituting Eq. (A-9) into Eq. (III-16), we immediately

obtain Eq. (II1-37).



APPENDIX B

In the following derivations, we presume that the procedure of

changing k to K and k' to - k' has been done.

II Derivation of Eq° (IV-6)

(1) By using _(0) in Eq. (III-5), we find

/ r,_ (., - (B-l)

(2) With the aid of the Plemelj formula

1 1

K" v' - Ku- iE K" v' - Ku+i_

/X

2_i 5(u - K.v')+ ---K- _.

we may write Eq. (III-35) as

,-- ,/ ./ ,,k

j ...............2_i g" d*)ed l__.v,,co,<u,/e)_

(3) In Eq. (B-2), by exchanging K and - k' and then replacing u

by -(w+ Ku)/k' (in this order), we find A(0)[-(w+ Ku)/k', - u]. By

substituting these B (0), and A(0)'s into Eq. (III-38), we find

88
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_(o)( co -{-KU

r ! e,, /

"-" K .-, ,L

(_'-_*,(_J _ .

(B-3)

(4) Since

oo

! .du 1 r du 1j --(u - k • v) ] A

(u-K" v-_,i_
C

therefore, by using the property of 6-function to perform the u-integra-

tion, we obtain Eq. (IV-6) at once.

II. Derivation of Eq. (IV-7)

(1) By using ___(0) and the definition of D 1 in Eq. (III-1), we find

where

(co +I_'Z'+ i _)_
(B-5)

Defining

dl(T/',K;k ) -= DI(_',K)/,_ (w+,_k. -,,v' + i_) 2 (B-6)
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)

(2) By using Eq. (B-7) in Eq. (III-29), we find

•. ,/ / _11

In the first term of r. h. s., we write _k = (k. + k') - ,_k'"

term, we differentiate by parts; then we find

LS°_, ,,., ' _. _°?t£ "

(3) By substituting Eq.

Eq. (IV-7).

(B-9) into Eq. (III-34), we obtain

(B-7)

(B-8)

And in the last

(B-9)

III° Derivation of Eq.

(1) By definition

1

hence

(iv-lo)

+
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----E':Q._L _(_,-

1,,' _"

I

,_ L(cO+_.v,ze)
_' YLc_,-_')_+ I-_'+,_.,v.,,_:-)'-.

Using the explicit form of Y1 in the second term then

-L_ I- _ ', ,

- E'°! "_ L

_(-) .., /-I

1¢[z ~

(2) In Eq. (B-7), interchanging K and -k' and replacing _?'by

77, we find

_ _E_o!(_+_.v,,:_)_ ~~ "- '

(B-11)

(3) By definition

_=E._ - _ + _' ._1_,___,) (B-12)

Thus

....L,_ -(Yo( ,,-,[.,....._ J

(B-13)



(4) Using _j:(0) in Eq. (I-65),
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wefind

(B-14)

Thus

N _ 4f j ,

(5) By adding up Eqs. (B-14), (B-10), (B-13), and

obtain Eq. (IV-10).

(B-15), we

IV. Derivation of Eq. (IV-54)
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(-'-"___ (--Oi - _e
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where

.,.,2 2 2
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(2)
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(3)

o

oo

.._J2

V. Proof of Eq. (IV-57)

(1) From Eq. (IV-56), we define

I
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since

2i
Zi (u) = --_ e ur_(_i - _e ) + A(W + u)

k"

2i

A*(u) = _,2 e _0(_bi - be ) + A(w + u)

hence

4-

or

)

I = Aiu_12

(2) Using Eq° (B-16) then

(B-16)

4- 2Z 8TLo _ _ )1t

IAf_)

This result enables us to obtain Eq° (IV-57).
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